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Abstract
The influence of inelastic relaxation time on the intrinsic spin Hall effects in a disordered
two-dimensional electron gas with Rashba interaction is studied; we clarify the controversy as
regards impurity effects in the system. We reveal that, due to the existence of inelastic
scattering, the spin Hall conductivity does not vanish when the impurity concentration
diminishes to zero, regardless of nonmagnetic or magnetic disorder. The spin accumulation is
evaluated by using the spin Hall conductivity obtained, and an alternative route is suggested for
verifying the intrinsic spin Hall effect by measuring the spin accumulation at different ratios.

1. Introduction

Much attention has been paid to the study of intrinsic
spin Hall effects (ISHE), which is expected to bring about
practical applications in spintronics. In the intrinsic spin
Hall effect, the spin current arises from the spin–orbit-
dependent band structure. Theoretically, ISHE may exist in
p-type semiconductor [1] and two-dimensional electron gas
(2DEG) [2]. After Sinova et al [2] predicted a universal
spin Hall conductivity, σsH = e/8π , in clean 2DEG, several
groups [3–7] indicated that an arbitrarily small impurity
concentration would suppress the spin Hall conductivity
to zero due to the vertex corrections. Rashba [6] and
Dimitrova [7] proved that the spin Hall current was always zero
in the nonmagnetically disordered system while Grimaldi et al
[8] and Krotkov [9] noticed that the spin Hall conductivity is
not zero unless it is in the special situation for a large Fermi
circle, quadratic band structure and momentum-independent
Rashba coefficient. Very recently, Inoue et al [10] and Wang
et al [11] recognized that the spin Hall conductivity is nonzero
in the presence of magnetic impurities. However, no one can
explain why there exists a discontinuous jump in σsH between
the clean limit and a clean system. Thus there remains a puzzle
as to why the clean limit of the spin Hall conductivity does
not equal the one in a clean system. Contradicting analytical
results, a numerical calculation for a finite 2DEG by Nomura
et al [12] manifested a robust spin Hall conductivity that falls to
zero only when the inverse of the elastic relaxation time (elastic
lifetime for brevity) is larger than the spin–orbit splitting of the

bands, i.e., 1/τ > �. This raises a question: why is there
such a controversy as regards the numerical calculation and
the analytical consequences? A consistent comprehension of
the aforementioned issues becomes obligatory.

It is known that all the states in two-dimensional infinite
systems in the presence of disorder are localized [13] at zero
temperature. At finite temperature, there exist delocalized
states because of the presence of dephasing. The interference
occurs only inside the decoherence length so the electronic
conductivity depends on the ratio of elastic to inelastic
lifetimes. Although the importance of dephasing in the
electrical charge transport in 2D systems has been addressed
in the weak localization theory [13–19], there has been no
discussion on the role of dephasing in the spin Hall effect. We
will show in the present paper that the dephasing plays a crucial
role in the spin Hall effect, leading to a nonzero conductivity
for an arbitrary impurity concentration.

This paper is organized as follows. In the next
section, we give a description of the system and make a
general formulation by introducing inelastic relaxation time.
In section 3, we investigate the influence on spin Hall
conductivity of nonmagnetic impurities. In section 4, we
consider magnetic impurities and study their effects on the
spin Hall effect. In section 5, we plot the curves of the
conductivity versus the ratio of elastic to inelastic relaxation
times and observe their asymptotic behaviors. We also discuss
the corresponding finite temperature behaviors. In section 6,
we evaluate the spin accumulation in terms of the spin Hall
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conductivity that we obtained. Our concluding remarks are
briefly summarized in the last section.

2. General consideration

The Hamiltonian for a 2DEG with Rashba spin–orbit coupling
is given by H = p2/2m∗ + α(σ x py − σ y px)+ Vdis with Vdis

denoting potentials produced by either nonmagnetic impurities
or magnetic impurities. The spin current is defined as

J z
y (p) = 1

4 (vyσz + σzvy)

= 1

2

py

m∗ σz . (1)

On the basis of Kubo’s formalism, the spin Hall conductivity
in response to a dc electric field at zero temperature can be
expressed as

σsH = − e

2π
Tr
[
J z

y Gr(μ) jx Ga(μ)
]
, (2)

where jx = d
d px
(

p2

2m∗ + α(σ x py − σ y px)) is the electrical
current; Gr and Ga denote the retarded and advanced Green’s
functions, respectively. The trace is taken over momentum and
spin indices.

The unperturbed Hamiltonian H0 = p2/2m∗ +α(σ x py −
σ y px) can be diagonalized as ε±(p) = p2/2m∗ ∓ pα by using
the unitary matrix

U(p) = 1√
2

(
1 1

ieiϕp −ieiϕp

)
,

where ϕp refers to the azimuthal angle of the momentum p with
respect to the x axis. Then the free particle Green’s function in
chiral bases can be expressed as

Gr
0(ch)(p, μ) =

⎛

⎜
⎝

1

μ− ε+ + iη
0

0
1

μ− ε− + iη

⎞

⎟
⎠ . (3)

We employ the diagrammatic technique [11] to calculate
the average spin Hall conductivity over the distribution of
impurities. The trace in equation (2) is expanded as a sum of
diagrams:

Tr[J z
y Gr jx Ga] = J z

y

Ḡa

Ḡr

jx

+ J z
y

Ḡa

Ḡr

jx + J z
y

Ḡa

Ḡr

jx + · · · .

The spin Hall conductivity consists of two parts σ 0
sH and σ L

sH,
namely,

σ 0
sH = − e

2π
Tr
[
J z

y Ḡr(μ) jx Ḡa(μ)
]
,

σ L
sH = − e

2π
Tr
[
J̃ z

y Ḡr(μ) jx Ḡa(μ)
]
,

(4)

where the former represents the contribution of the one-loop
diagram while the latter arises from the vertex corrections.
Here J̃ z

y refers to the corrected-spin-current vertex which obeys
a self-consistent equation [11] illustrated by the following
diagram:

J z
y = + + · · · .

The self-consistent Born equation is

Ḡr
(ch)(p) = Gr

0(ch)(p)+
∑

q

Nu2

V 2
Gr

0(ch)(p)U
†(p)U(q)

× Ḡr
(ch)(q)U

†(q)U(p)Ḡr
(ch)(p)

in the presence of nonmagnetic impurities. The Green’s
function is supposed to be

Ḡr
(ch)(p, μ) =

⎛

⎜
⎜
⎝

1

μ− ε+ + i
2τ

0

0
1

μ− ε− + i
2τ

⎞

⎟
⎟
⎠ . (5)

Then one gets the momentum relaxation time τ , which is
related to the impurity concentration ni and scattering strength
u, namely 1/τ = ni u2m∗ regardless of the nonmagnetic or
magnetic impurities.

To uncover the puzzle and disentwine the controversy
in the impurity effects on the spin Hall conductivity, we
need to look through the features of an infinite two-
dimensional quantum system. An infinite system with
infinitesimal impurity concentration contains an infinite
number of impurities. Diluting the impurity concentration
means increasing the distance between impurities. The infinite
quantum systems with different impurity concentrations can
be mapped into each other by redefining the length scale and
Fermi wavelength, whereas they cannot be directly mapped
into a clean system. This means that the clean limit of an
infinite quantum system is not always a clean system for the
two-dimensional electron gas when the effect of dephasing
is ignored. The dephasing can be characterized by inelastic
relaxation time.

We employ an imaginary self-energy to represent the
inelastic scattering, which was introduced early on in the weak
localization theory [16, 19]. Thus the Green’s functions Ḡr(μ)

and Ḡa(μ) are substituted by frequency-dependent functions
Ḡr(μ + ω/2) and Ḡa(μ − ω/2) where ω is replaced by i/τi

with τi being the inelastic relaxation time (inelastic lifetime for
brevity). As a result, the averaged Green’s function in chiral
bases turns out to be

Ḡr
(ch) =

⎛

⎜
⎜⎜
⎜
⎜
⎝

1

μ− ε+ + i

2τ
+ i

2τi

0

0
1

μ− ε− + i

2τ
+ i

2τi

⎞

⎟
⎟⎟
⎟
⎟
⎠
.

(6)
In the limit case τi → ∞, the above Green’s function gives
rise to equation (5).
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3. 2DEG with nonmagnetic impurities

We consider a system in the presence of nonmagnetic
impurities. The interaction between electrons and impurities
is expressed as

Vdis =
N∑

i=1

∫
dr2uδ(r − Ri )ψ̂

†(r)ψ̂(r). (7)

The calculation of the momentum integral of the product of
Green’s functions is carried out analytically. For simplicity, we
adopt the limit of large Fermi energy μ → ∞ first. The σ 0

sH
that we obtained remains the so called universal value e/8π .

Furthermore, we calculate the vertex correction. The self-
consistent equation for J̃ z

y reads

J̃ z
y = ni u2

V

∑

p

Ḡa(p, 0)(J z
y (p)+ J̃ z

y )Ḡ
r(p, 0). (8)

Solving the above equation with substitution of ni u2 by
1/(τm∗), we get the corresponding matrix element, saying

( J̃ z
y )↑↓ = −i

4αm∗(2τ − τ ′)
, (9)

where 1/τ ′ = 1/τ+1/τi . Then we obtain the vertex correction

σ L
sH = −ie( J̃ z

y )↑↓m∗ατ ′

2π
= −e

8π(2 τ
τ ′ − 1)

. (10)

As a reasonable asymptotic behavior, the corrected-spin-
current vertex tends to zero when τ → ∞ which is the realistic
clean limit. In our formulation, the momentum integral of
the product of Green’s functions

∑
p Ḡr(μ,p) jx(p)Ḡa(μ,p)

is convergent when τ → ∞ for a finite τi such that the vertex
correction goes to zero in the clean limit. This is due to the
divergence of the momentum integral when 1/τi = 0 in the
current literature; the vertex correction is not zero in the clean
limit. The vertex correction arises from the interference of the
scattering waves from different impurities. When the elastic
lifetime is much larger than the inelastic lifetime or the distance
between impurities is much larger than the decoherence length,
the interference effect will disappear. So it is natural that the
vertex correction goes to zero in the clean limit, removing the
discontinuity in the conductivity variation.

The total spin Hall conductivity is then given by

σsH = e

8π

1

1 + τi
2τ

, (11)

which fulfills lim
τ→∞ σsH = e/8π for a finite inelastic lifetime.

The clean limit of the spin Hall conductivity is precisely the
conductivity in a clean 2DEG due to the disappearance of
vertex corrections. Here we do not consider the finite size
effect since the system’s size is assumed to be much larger than
the mean free path or the decoherence length.

In the limit τi → ∞, we have σsH = 0 coinciding with the
result for a system without inelastic scattering. For large τ/τi ,
the spin transport belongs to the semiclassical regime and the

conductivity goes to e/8π . When τ/τi is small, the transport
falls into the quantum regime and the conductivity tends to
zero. Our result demonstrates the difference between the
semiclassical and quantum transport regimes in the spin Hall
effect. It was proved that the spin Hall conductivity vanishes
when there exist nonmagnetic impurities in a homogeneous
system [6, 7]. It was also indicated [6] that inhomogeneities
facilitate spin currents. However, the conclusions are not
valid after taking account of inelastic lifetime because their
Schrödinger equation is not appropriate for describing a system
with inelastic scattering. Our consequence is that the spin Hall
conductivity is not zero in a realistic system.

In calculating the momentum integrals of Green’s
functions in the above, we assumed an infinite Fermi energy
for simplicity. For a finite Fermi energy, we can also
evaluate the spin Hall conductivity in the semiclassical
approximation [7, 11]. We get formally a similar σ 0

sH to [7]
with the only difference that τ becomes τ ′,

σ 0
sH = e

8π

(
1 − 1

1 + (�τ ′)2

)
. (12)

Now the matrix element of the corrected-spin-current vertex is
found to be

( J̃ z
y )↑↓ = −ivF�τ

′2

4τ (1 + (�τ ′)2)− 2τ ′(1 + (�τ ′)2)− 2τ ′ , (13)

where� is the spin–orbit splitting at the Fermi surface, and vF

the Fermi velocity. The vertex correction is obtained as

σ L
sH = e

8π

(�τ ′)2

1 + (�τ ′)2

× −�2τ ′3

2τ (1 + (�τ ′)2)− τ ′(1 + (�τ ′)2)− τ ′ . (14)

Consequently, the total spin Hall conductivity is given by

σsH = e

8π

(τi�)
2

(1 + τi/τ)2 + (τi�)2(τi/2τ + 1)
. (15)

The vertex correction still goes to zero in the clean limit,
leading to continuous change of the conductivity with respect
to the impurity concentration. For a finite Fermi energy, the
spin Hall conductivity depends not only on the ratio of elastic
to inelastic lifetimes but also on the spin–orbit splitting at the
Fermi surface. The clean limit of equation (15) is e

8π
(τi�)

2

1+(τi�)
2 ,

depending on the inelastic lifetime τi . If the inelastic lifetime
becomes infinitely long, equation (15) diminishes to zero,
recovering the result that we are familiar with.

Let us compare with the numerical result [12]. Nomura
et al set a finite η−1 to guarantee the convergence in their
numerical calculation and found that the spin Hall conductivity
increases as the impurity concentration decreases and ητ

increases. In their paper, η−1 is called the electric field turn-
on time; in fact, it should be the inelastic lifetime τi . Since ητ
corresponds to the ratio τ/τi , their result supports our present
conclusion.
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4. 2DEG with magnetic impurities

Very recently, the spin Hall conductivities in the presence of
magnetic impurities were calculated in [10, 11] manifesting
that the spin transport properties of magnetically and
nonmagnetically disordered systems are different. It becomes
obligatory to confirm whether this difference remains when
the inelastic scattering is not ignored. We adopt the scattering
potentials of magnetic impurities as

Vdis =
N∑

i=1

∫
dr2 uδ(r − Ri )

× ψ̂†(r)
(

cos θi sin θi e−iφi

sin θi eiφi − cos θi

)
ψ̂(r). (16)

We firstly consider the infinite Fermi energy limit, obtaining
σ M0

sH = e/8π . The self-consistent equation for the corrected
vertex is expressed as

J̃ Mz
y = ni u2

V

∑

p

∫
dθ dφ

1

4π
sin θ

×
(

cos θ sin θe−iφ

sin θeiφ − cos θ

)
× Ḡa(p, 0)(J z

y (p)

+ J̃ Mz
y )Ḡr(p, 0)

(
cos θ sin θe−iφ

sin θeiφ − cos θ

)
. (17)

The matrix element of the corrected vertex is found to be

( J̃ Mz
y )↑↓ = i

4αm∗(6τ + τ ′)
. (18)

And the vertex correction is obtained as

σ M L
sH = e

8π

1

6 τ
τ ′ + 1

. (19)

Thus the spin Hall conductivity is given by

σ M
sH = e

8π

(

1 + 1

6 τ
τi

+ 7

)

. (20)

Obviously, the clean limit, τ → ∞, of the spin Hall
conductivity in magnetically disordered systems is also the
universal value e/8π [2]. In the limit of infinite inelastic
lifetime, σ M

sH goes to e/7π consistently with the recent
results [10, 11] for magnetic impurities.

We also consider the case for a finite Fermi energy.
The σ M0

sH here retains the same result as equation (12) for
nonmagnetic impurities, while the matrix element of the
corrected vertex reads

( J̃ Mz
y )↑↓ = ivF�τ

′2

12τ (1 + (�τ ′)2)+ 2τ ′(1 + (�τ ′)2)+ 2τ ′ (21)

and the vertex correction is given by

σ M L
sH = e

8π

(�τ ′)2

1 + (�τ ′)2

× �2τ ′3

6τ (1 + (�τ ′)2)+ τ ′(1 + (�τ ′)2)+ τ ′ . (22)

Figure 1. Spin Hall conductivity versus the ratio of elastic to
inelastic lifetimes is plotted in both cases for nonmagnetic and
magnetic impurities.

The total spin Hall conductivity in the presence of magnetic
impurities is then expressed as

σ M
sH = e

8π

(τi�)
2

(1 + τi/τ)2 + (τi�)2
7+6τ/τi

8+6τ/τi

. (23)

When τ/τi = 0, equation (23) becomes e
8π

8(�τ)2

8+7(�τ)2 , recovering
the result of our recent paper [11]. When τ/τi → ∞,
equation (23) reduces to e

8π
(τi�)

2

1+(τi�)2
which is precisely the

conductivity in the clean limit of nonmagnetic impurities for
finite Fermi energy.

5. Discussion of the impurity effects

The above studies exhibited that the spin Hall conductivities,
in the presence of either nonmagnetic or magnetic impurities,
depend on the ratio of elastic to inelastic lifetimes. We
plot the curves of the conductivity versus τ/τi in the
presence of nonmagnetic and magnetic impurities in figure 1.
As the impurity concentration decreases (i.e., τ increases),
σ M

sH decreases while σsH increases monotonically. The
magnetic impurities enhance the ISHE, while the nonmagnetic
impurities suppress it. In the clean limit, both magnitudes
approach e/8π . In the dirty limit or infinite inelastic lifetime
limit, σ M

sH goes to e/7π but σsH goes to zero.
It is worthwhile to consider the finite temperature case.

We have already shown that the spin Hall conductivity depends
on the ratio of elastic to inelastic lifetimes merely in the
approximation of infinitely wide band and infinitely large
Fermi energy. These two characteristic times are important
to both the charge and spin transport properties for 2D
systems. Our results provide a clue to how to compare those
characteristic times by making use of the charge and spin
transport experiments. At low temperature, the elastic lifetime
τ is determined by the impurity concentration and is a constant
independent of the temperature, while the inelastic lifetime
τi relates to the electron–electron interaction and decreases
when the temperature increases. In general, τi ∝ T −p

whose exponent p depends on the scattering mechanism (e.g.,
p = 2 for electron–electron scattering); then the spin Hall
conductivity is proportional to 1/(1+K T −p), increasing as the

4
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temperature rises. Since the spin Hall conductivity is sensitive
to the temperature, its temperature dependence is expected to
distinguish the ISHE and ESHE.

6. Spin accumulation

The spin accumulation brought about by spin Hall effect has
been observed [20–25] in experiments. We therefore evaluate
the spin accumulation generated by the intrinsic spin Hall
current on the basis of the results that we obtained in the
above. We consider a bar of width W in the y-direction with
an applied electric field along the x-direction, for which a spin
current along the y-direction will arise. If the width is much
larger than the mean free path and the decoherence length
W � l, lϕ , the system is in the diffusive transport regime. The
spin accumulation can be studied using the diffusion equation

D
d2Sz

dy2
= Sz

τs
, (24)

where D = v2
Fτ/2 is the diffusive coefficient, τs the spin

relaxation time (spin lifetime for brevity), and Sz = 1/2(n↑ −
n↓). The spins accumulate at the edges of the bar until the
diffusive spin current in opposite direction balances the spin
Hall current. Then a steady spin distribution is established.
For simplicity, we do not take the influence of the spin
accumulation on the spin Hall current into account. The
boundary condition is then given by

J z
y = D

dSz

dy

∣
∣
∣

y=±W/2
. (25)

The solution of the above diffusion equation is

Sz(y) = J z
y

√
τs/2D

cosh W√
2Dτs

sinh
y√

Dτs/2
. (26)

Equation (26) is a good approximation for the spin distribution
in the region away from the edge. Approaching the edge,
however, the spin accumulation will affect the spin current
significantly, leading to a dramatic loss of spin current.
According to equation (26), the spin density at the edge of the
sample is

Sz = eE

8πvF

2τ/τi

2τ/τi + 1

√
τs

τ
tanh

W

vF
√
ττs

(27)

in the presence of nonmagnetic impurities, and

Sz = eE

8πvF

6τ/τi + 8

6τ/τi + 7

√
τs

τ
tanh

W

vF
√
ττs

(28)

in the presence of magnetic impurities. Here E stands for
the electric field in the x-direction. The spin accumulation
depends on the three characteristic times: the elastic lifetime,
the inelastic lifetime and the spin lifetime. Because the
different characteristic times can be manipulated separately,
our result proposes an alternative route to verifying the ISHE
by measuring the spin Hall accumulation under different
conditions.

The spin accumulation due to the spin Hall effect
was analyzed theoretically [25–28]. In the 2DEG, the
spin accumulation was observed in [24], where the authors
regarded it as arising from ESHE because the relation � <

1/τ is satisfied in their experiments. In this situation,
they believe that the ISHE does not exist according to
Nomura’s calculation [12]. But our result shows that the
spin Hall conductivity is not zero; instead, it depends on
the characteristic times of the system, especially on the ratio
of elastic to inelastic lifetimes. Thus a careful discussion
is necessary for one to judge whether the observed spin
accumulation arises from the ESHE or from the ISHE. An
experiment at different temperature is expected to be helpful.

7. Concluding remarks

We indicated that the clean limit of an infinite quantum system
is not a clean system if the effect of dephasing is ignored. It
was hence natural for us to have obtained a discontinuity (zero
with arbitrarily small impurity concentration but e/8π with no
impurities) in the spin Hall conductivity for infinite systems
without taking account of dephasing which is characterized
by inelastic relaxation time. The disagreements between
numerical result and the other analytical results become
inevitable because the former [12] dealt with a finite system
and the clean limit of a finite system is a clean system.

We exposed the influence of the inelastic relaxation time
on the ISHE for 2D electrons in the presence of magnetic and
nonmagnetic impurities. We found that the inelastic scattering
plays an important role in the spin Hall effect, leading
to a nonzero spin Hall conductivity for arbitrary impurity
concentrations. In the dirty limit, the spin Hall conductivity
goes to zero and e/7π for nonmagnetic or magnetic impurities,
respectively. It tends to e/8π in the clean limit regardless
of the magnetic or nonmagnetic disorder of the systems. We
revealed the importance of characteristic times, such as the
elastic, inelastic and spin lifetimes for the ISHE. The spin
Hall conductivity is shown to depend on the ratio of elastic to
inelastic lifetime and varies when temperature changes, which
provides a method for distinguishing the ISHE and ESHE
by measuring the spin current at different temperatures. On
the basis of the spin Hall conductivity that we obtained, we
evaluated the spin accumulation and presented an alternative
route to verifying the ISHE by measuring it under different
conditions.
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